

Introduction to HTML5

Version 03/2011

Jeroen Hartsuiker

Contents

Module 1: Overview of HTML5

Lesson 1: Introducing HTML5 1-3

Lesson 2: Creating an HTML5 Document 1-7

Lesson 3: HTML5 Feature Detection 1-17

Module 2: Integrated HTML5 APIs

Lesson 1: Web Forms 2-3

Lesson 2: Playing Audio and Video 2-12

Lesson 3: The Canvas Element 2-19

Module 3: HTML5 Associated APIs

Lesson 1: Geolocation API 3-3

Lesson 2: Web Storage API 3-9

Lesson 3: Web Sockets and Web Workers 3-14

Module 1: Overview of HTML5 1-1

Module 1

Overview of HTML5

Contents:

Lesson 1: Introducing HTML5 1-3

Lesson 2: Creating an HTML5 Document 1-7

Lesson 3: HTML5 Feature Detection 1-17

1-2 Introduction to HTML5

Module Overview

In this module the most important characteristics and ingredients of the next major version of the

HyperText Markup Language (HTML) will be covered. Its history, body of thought, industry

participants, features and possibilities are discussed. The new semantic elements of HTML5 and

support detection of desired features in certain user agents is part of this module, too.

Module 1: Overview of HTML5 1-3

Lesson 1

Introducing HTML5

This lesson starts with a discussion on how the HTML language has evolved to its next version.

Furthermore attention is given to what HTML5 actually is and a listing of some of its features.

1-4 Introduction to HTML5

Short History of HTML

Key Points

HTML goes back a long time. It was first published as an Internet draft in 1993. The 1990s saw

versions 2.0, 3.2, 4.0 and finally version 4.01 in 1999. The World Wide Web Consortium

(W3C) assumed control of the specification.

Since 1998, the W3C believed that the future versions should follow the XML syntax, to make

HTML more extensible and increase interoperability with other data formats. This idea would

lead to the XHTML 1.0 specification in 2000. This XML version of HTML required for example

the strict XML syntax rules like quoting attributes, closing some tags while self-closing others.

Unforgiving Rules

Starting with the 1.1 version of XHTML the W3C introduced the concept of having a page fail

as a whole as soon as a syntactical error would appear. The 2.0 version of the standard was

meant to continue this draconian error handling.

Do Not break The Web

In 2004, a group of people were very concerned that this strictness would break the web. They

believed that browsers should be forgiving, trying to render any page, no matter which HTML it

was written in, syntactically correct or not. They formed the Web Hypertext Application

Working Group (WHATWG) and started developing what they believed would be the next

version of the markup language, calling it Web Applications 1.0

The next few years the W3C and the WHATWG tried to ignore each other. But by the end of

2006 the W3C, still working on the draft of XHTML 2.0, realized that no major browser would

implement it. The founder of the W3C announced that they would be working together with the

WHATWG, and together renamed the next version HTML5.

Joined Forces

The W3C stopped working on version 2.0 of XHTML in 2009, enabling its HTML Working

Group to focus completely on developing HTML5. The group includes AOL, Apple, Google,

IBM, Microsoft, Mozilla, Nokia, Opera and many other vendors. An important fact is that all

Module 1: Overview of HTML5 1-5

browser vendors have representatives in the working groups now. Vendors have the right to veto

any aspect of the specification. Because ñif they donôt implement it, the spec is nothing but a

work of fictionò, according to WHATWG member and editor of the HTML5 specification Ian

Hickson. The specification is expected to reach candidate recommendation in 2012. This means

when that stage is reached, HTML5 will be complete.

1-6 Introduction to HTML5

What is HTML5

Key Points

HTML5 is the next major revision of the HTML standard, providing new features that are

necessary for modern web applications. It also standardizes many features of the web platform

that web developers have been using for years.

HTML5 is designed to be cross-platform and backward compatible with existing web browsers.

Some new features are build on existing features and allow for providing fallback content for

older browsers. The browserôs Document Object Model (DOM) is an integrated part of HTML5

now. The world of mobile devices is not ignored either. The mobile web browsers that are pre-

installed on iPhones, iPads and Android phones all have very good HTML5 support.

New Features

Many new features are added by HTML5. To improve the semantic richness of a document,

elements such as <section>, <article>, <header> and <nav> have been introduced.

Other elements include <video>, <audio> and <canvas>, as well as Scalable Vector Graphics

(SVG) content integration, which improve the inclusion and handling of multimedia and graphic

content on the web. All this without the need to download and install third-party plugins and

having to learn their specific syntax and object model.

HTML5 gives better support for local offline storage. Web storage supports persistent data

storage, similar to cookies, as well as window-local storage.

New form controls are available like calendar, date, time, email, url and search.

The required process for handling invalid documents has been defined as well, so that syntax

errors will be treated in a uniform way by all user agents.

Module 1: Overview of HTML5 1-7

Lesson 2

Creating an HTML5 Document

After the brief history lesson and a quick feature teaser, it is time to get to work with the new

markup standard. After introducing the new doctype and character setting some semantic

elements are discussed. A basic HTML5 document will then be constructed with a belonging

stylesheet to layout the page.

1-8 Introduction to HTML5

Hello HTML5

Key Points

The doctype and the html and meta element will be discussed here. These items make the

starting point of any proper HTML5 document.

The doctype needs to be on the first line of your HTML file. This is because certain browsers

might handle the page as if no doctype is presented when even a single blank line is above it.

A browser knows at least two modes: quirks mode and standards mode. Quirks mode is

triggered when no doctype declaration is found and is used to render older or non-standard

HTML. Standards mode is driven by the use of proper doctypes. The page is then rendered using

the parsing rules belonging to the HTML specification identified by the doctype.

The new doctype declaration looks as follows:

<! DOCTYPE html>

After the doctype, the root element follows. This is our well-known HTML tag. It is advised to

use the language attribute, so that screen reader software is able to use the right pronounciation.

<html lang= " en" >

The character set declaration is also short, and should be in the first 512 bytes of the document.

The most commonly used set of characters is specified as follows:

<meta charset="utf - 8" / >

It is important to explicitly set the character set. Failing to do so may result in a security risk as

the result of a cross-site scripting (XSS) attack. Further details are in an article entitled ñUTF-7:

the case of the missing charsetò (http://code.google.com/p/doctype/wiki/ArticleUtf7).

No XML Language

HTML5 is not an XML language. So officially, HTML5 is not case-sensitive, its elements do not

need quotes around attributes and empty elements do not need to be closed. Due to the stricter

http://code.google.com/p/doctype/wiki/ArticleUtf7

Module 1: Overview of HTML5 1-9

XHTML rules, the validator used cared a lot about following the XML syntax. But browsers

never had any problem with ignoring the rules mentioned before. Because of maintenance

purposes it is adviced to pick a certain style and keep to it as a team. This course will try to keep

the XML rules in mind.

Check Validity

To check if the document is a valid HTML5 document, websites like http://html5.validator.nu

may be used.

http://html5.validator.nu/

1-10 Introduction to HTML5

Enter the Semantic Elements

Key Points

Several search engines have analyzed millions of pages in the last couple of years to find that

among the most popular div element class names and ids are for example: header, footer and

nav. This gives a clear idea of how web page authors try to structure their HTML documents.

This inspired the people working on the HTML5 specification to create more semantic elements,

some of which are shown in the following table.

Semantic

Element

Description

<article> Defines external content. This could be a news article from an external

provider or a blog or forum text. It should be independent from the rest of the

document

<aside> Defines some content aside from the content it is placed in. The aside content

should be related to the surrounding content. It could be placed as a sidebar

in an article.

<footer> Defines the footer of a section or document. Typically contains the name of

the author, the date the document was written or contact information.

<header> Defines a group of introductory or navigational aids. It is intended to contain

the sectionôs heading (an h1 to h6 element or an hgroup element). It can also

be used to wrap a sectionôs table of contents, a search form or some logo.

<hgroup> Defines the heading of a section or a document and is used to group headers

h1 to h6 when the heading has multiple levels, such as subheadings,

alternative titles or taglines.

<mark> Defines a run of text in marked or highlighted characters for reference

purposes.

<section> Defines a generic section of a document and is a thematic grouping of

content (typically with a heading), like chapters or the numbered sections of

a thesis. A home page could be split into different sections for the

introduction, news items and contact information.

Module 1: Overview of HTML5 1-11

Semantic

Element

Description

<time> Defines either a time on a 24-hour clock or a precise date in the proleptic

Gregorian calendar, optionally with a time and a timezone offset.

<nav> Defines a section of a page that contains navigation links to other (parts

within) pages. Only sections that consist of major navigation blocks are

appropriate for this element.

A complete list of all known, new and no longer supported HTML5 elements can be found on

the ñHTML Tag Referenceò page: http://www.w3schools.com/html5/html5_reference.asp

http://www.w3schools.com/html5/html5_reference.asp

1-12 Introduction to HTML5

Putting it Together

Key Points

A basic HTML5 web page is shown here, using some of the most common new elements.

Certain elements and attributes will be discussed along the way.

Basic HTML5 Page

We start with the elements discussed earlier, declaring the doctype, language and character set.

<!DOCTYPE html>

<html lang="en">

 <head>

 <meta charset="utf - 8">

 <title>A page is not valid HTML5 without a title element</title>

 <link href="first.css" rel="stylesheet" type="text/css" />

 </head>

 <body>

 <div id="container">

 <header>

 <h1>This is the Main Header< /h1>

 </header>

 <div id="columnMaker">

 <section>

 <h2>This is the Articles Section Header</h2>

Element hgroup

The hgroup element is meant to group two or more related header elements, like a subtitle or

tagline. By using this element, the HTML5 document outline does not create an unnecessary

(phantom) node for each alternative title or tagline.

 <article>

 <header>

 <hgroup>

 <h3>1st Article Header</h3>

 <h4>A r elated header, such as an alternative title...</h4>

 <h4>... or some tagline!</h4>

Module 1: Overview of HTML5 1-13

 </hgroup>

 </header>

 <p>This would be a simple paragraph.</p>

 </article>

Element time

The time element may contain both a machine-readable and human-readable timestamp. The

machine-readable part consists of the mandatory datetime attribute. The optional pubdate

attribute may appear only once within an article element, indicating its publication date. The

+01:00 after the number of milliseconds of the time part indicates UTC+1, the Central European

Time zone (CET).

 <article>

 <header>

 <h3>2nd Article Header</h3>

 This is written the <time datetime="2011 - 10- 22"

 pubdate="pubdate"> 22nd of October, 2011 </time>

 </header>

 <p>We have a meeting

 <time datetime="2011 - 10- 23T14:00:00.000+01:00">

 tomorrow at 2 pm </time> .

 It is <mark>important</mark> that you are present.</p>

 </article>

Other Elements

The rest of the page consists of the more intuitive nav(igation) and aside element. The menu

element has no support in any browser just yet. A footer finally closes the body area.

 </section >

 <nav>

 Menu

 <menu type"list" label="Weekdays" >

 Sunday

 Monday

 <! -- rest of menu -- >

 </ menu>

 </ nav>

 </div>

 <aside>

 <p>Advertising Space</p>

 </aside>

 <footer>

 <p>[footers always contain some copyright text]</p>

 </footer>

 </div>

 </body>

</html>

Divisions

The addition of the semantic and other new HTML5 elements does not make the division (div)

element useless. The semantically neutral div element (defined in HTML 4 as a generic

mechanism for adding structure to documents) will still be very often used within a Cascading

Style Sheet (CSS) in order to layout a web page.

1-14 Introduction to HTML5

Note The HTML5 specification strongly encourages authors to view the div element as an

element of last resort, for when no other element is suitable. Use of the div element instead of

more appropriate elements leads to poor accessibility for readers and poor maintainability for

authors.

Two div elements have been added to our example HTML5 page to be used by the stylesheet

printed on the next page. These are necessary to be able to show the page using a three-column

layout.

Checking the Document Outline

By checking the HTML5 document outline (mentioned earlier in the ñElement hgroupò

paragraph), the page can be reviewed to determine the correct hierarchical use of all the (new

semantic) html elements. Creating a logical outline keeps the document clear and maintainable.

To check your document outline online, search for the words ñhtml5 outlinerò using a search

engine of choice.

Browser extensions like the HTML5 Outliner for Chrome can be found at

http://code.google.com/p/h5o/. After installing this extension, Chrome will have a little button in

the upper right corner. Clicking this button will show a clickable document outline.

http://code.google.com/p/h5o/

Module 1: Overview of HTML5 1-15

Show Some Style

Key Points

To create the look and feel of an HTML5 web page a Cascading Style Sheet (CSS) is used. This

is done in the exact same way as when working with previous versions of HTML.

Basic CSS Document

The following stylesheet can be used to layout the HTML5 document created earlier, using a

Search Engine Optimized (SEO) friendly 2-1-3 column ordering. Note that instead of mostly div

styling in earlier HTML versions, the new HTML5 elements are present as CSS selectors to be

styled as well.

nav

{

 float: left;

 width: 140 px;

}

section

{

 float: right;

 width: 400px;

}

aside

{

 float: right;

 width: 140px;

}

footer

{

 display: block;

 clear: both;

}

1-16 Introduction to HTML5

li

{

 list - style - type: none;

}

#container

{

 width: 700px;

 position: relative;

 text - align: left;

 margin : 0 auto;

}

#columnMaker

{

 float: left;

 width: 550px;

}

Module 1: Overview of HTML5 1-17

Lesson 3

HTML5 Feature Detection

This lesson introduces two important methods that can be used to check whether a desired

HTML5 feature is supported in the user agent at hand.

1-18 Introduction to HTML5

It Works On My Machine

Key Points

To make sure that a certain browser supports a desired part of HTML5, it is unwise to just check

whether or not HTML5 as a whole is supported. That is because HTML5 is not one thing to

check for, it is more a collection of specific features.

Detecting Individual Features

Common techniques to detect HTML5 features are checking if the property concerned exists on

a certain global object, or creating an element and checking whether a desired method exists,

calling it and making sure its return value is the one expected. Furthermore a certain element

could be created, the desired property could be set and then checked for persistence of that value.

This course will show an example for the feature concerned when that particular HTML5 subject

will be discussed, for example when checking for the canvas API.

function doesThisBrowserSupportCanvas()

{

 return !!document.createElement(" canvas").getContext;

}

Note The double not (!!) operator is used to force the resulting property value to a boolean. It is

shorter than using the ternary operator (expression) ? true : false .

Other Usefull Places to Check

The site http://www.caniuse.com shows and compares compatibility tables for support of

HTML5, CSS3, SVG and more in desktop and mobile browsers as the siteôs tagline proclaims.

To check the supported features of the browser currently used, navigate to the following web

site: http://www.html5test.com.

http://www.caniuse.com/
http://www.html5test.com/

Module 1: Overview of HTML5 1-19

Another Modern Way

Key Points

Another way to check whether the current user agent supports a certain HTML5 or CSS3 feature

is to use Modernizr, an open source library written in JavaScript. Modernizr is available under

the BSD and MIT licenses and can be downloaded here: http://www.modernizr.com.

Easy to Use

After downloading the JavaScript file it can be included and used as shown in the following code

sample. A global object named Modernizr will then be available, containing a boolean property

for each detectable HTML5 and CSS3 feature. Of course, it is recommended to use the latest

version of this free JavaScript library, that is about 10 kilobytes in size.

<!DOCTYPE html>

<html lang="en">

 <head>

 <meta charset="utf - 8">

 <title> Are We Lost </title>

 <script src="modernizr.min.js" type="text/javascript"></script>

 <script type="text/javascript">

 if (Modernizr.geolocation)

 {

 // Let us navigate to our house : -)

 }

 else

 {

 // We are alone in the dark : - (

 }

 </script>

 </head>

 <body>

 ...

http://www.modernizr.com/

Module 2: Integrated HTML5 APIs 2-1

Module 2

Integrated HTML5 APIs

Contents:

Lesson 1: Web Forms 2-3

Lesson 2: Playing Audio and Video 2-12

Lesson 3: The Canvas Element 2-19

2-2 Introduction to HTML5

Module Overview

In this module some important parts of what is sometimes considered the integrated HTML5

Application Programming Interfaces (APIs) are discussed. The lessons include working with the

HTML5 form tags and attributes - sometimes called Web Forms 2.0 - and the added media

elements and how to control them using JavaScript. The canvas element is also an important

topic to be covered by this module.

Module 2: Integrated HTML5 APIs 2-3

Lesson 1

Web Forms

This lesson is about web forms. According to the introductory text of the section about forms on

the Web Hypertext Application Technology Working Group (WHATWG) website, it is a

component of a web page that has form controls, such as text fields, buttons, check boxes, range

controls or color pickers. A user can interact with such a form, providing data that can then be

sent to the server for further processing. No client-side scripting is needed in many cases, though

an API is available so that scripts can augment the user experience or use forms for purposes

other than submitting data to a server.

Until now, the HTML form elements are rather basic in their functionality. The HTML5

specification provides some very handy general attributes to be used on elements, but also some

new form elements to adorn your web forms. Furthermore some members have been added to

input types to be used by JavaScript code for validation purposes.

2-4 Introduction to HTML5

Handy Attributes

Key Points

 A couple of new attributes have been added by the HTML5 specification to improve usability

and the overall user experience. A couple of them will be discussed here.

Autofocus

Using the autofocus attribute on an input element like text or checkbox, puts the focus on the

that element when the web page loads. When more elements happen to set the autofocus

attribute, the last one setting it will actually receive it. The element does not need to be inside the

form to receive the focus. In the following example, the radio type input element will get focus:

<form action="">

 <input type="checkbox" autofocus="autofocus" />

 <input type="text" autofocus="autofocus" />

</form>

<input type="radio" autofocus ="autofocus" />

Setting autofocus to ñfalseò will not disable autofocus functionality for that particular element.

Removing the attribute altogether does. Also be aware that browsers may scroll down to be

showing the focussed element if the form is situated lower on the page.

Placeholder

To place some suggested text into an input text element, the placeholder attribute can be used as

follows:

<input type="text" placeholder ="Please enter your name" />

The suggested text will be visible if no content has been entered and if focus is not established.

The placeholder text will not be posted when submitting the form.

Required

Marking a field as required and thereby cancelling the formôs submit action if no value is

entered, can be done as follows:

Module 2: Integrated HTML5 APIs 2-5

<input type="text" required =" required " />

The required element also gives you another hook when writing custom form validation using

JavaScript.

List

The List attribute is used to link to a data source in the form of a datalist element in order to

present the user with a list of options to choose from, besides the ability to enter free text. A code

example is shown here:

<input type="text" list=" myDataList " />

The belonging datalist element may live (almost) anywhere on the web page and does not

render an interface.

<datalist id= " myDataList ">

 <option value="123" label="One Two Three" />

 <option value="456" label="Four Five Six" />

 <option value="789" label="Seven Eight Nine" />

</datalist>

Pattern

Some of the new elements that will be discussed on the next page have a certain regular

expression embedded, but using the pattern attribute makes it possible to set and validate

against a custom regular expression. The start of line (^) and end of line ($) character can be

omitted. An example of a dutch postal code follows:

<input type="text" pattern ="[1 - 9][0 - 9]{3} \ s?[a - zA- Z]{2}" />

Note \s means a white space character and ? stands for 0 or 1 repetitions of the preceding part.

Multiple

The multiple attribute is not new. It could already be used to enable the user to select more than

one option in a select element. Now it can be used on an input element with its type set to file. In

this way, more that one file can be uploaded at once.

<input type="file" multiple="multiple" />

Form

To have an element that is positioned outside an HTML form still be posted with that same form,

the form attribute is invented. Setting the mentioned attribute equal to the id of the form

concerned makes sure the element is posted to the server. This could look as follows:

<form id =" frmMain " ... >

...

</form>

<input type= " text " name=" txtOutsideForm " form =" frmMain " />

2-6 Introduction to HTML5

Dandy Input Types

Key Points

A lot of new input types are available when using HTML5. The specification does not tell how

the browsers should render the new types. Different browsers on different devices will present a

different user experience.

For mobile devices, the onscreen keyboard display for a certain input type may also vary. To

increase usability it is made easier to enter a related symbol, like @, period (.) ñ.comò, forward

slash (/) or a complete numeric keypad (for the tel type), depending on the input type concerned.

Check it Out

Checking browser support using Modernizr, the inputtypes property can be checked, using the

desired type, as follows:

var bEmailInputTypeSupport = Modernizr.inputtypes. email ;

Another technique is to create an input element in memory, set its type attribute to the desired

HTML5 type and then check for value persistence, as follows:

var i = document.createElement("input ");

i.setAttribute("type", " email ");

var bEmailInputTypeSupport = (i.type !== "text");

Email and Web Addresses

Using the following markup a browser can check whether an email address is formatted

correctly. There is no definition of how errors should be reported.

<input type=" email " />

A Uniform Resource Locator (URL) field should be marked using the following syntax:

<input type=" url " />

Numeric Up Down

Module 2: Integrated HTML5 APIs 2-7

When setting input type equal to number, some kind of spinner, spinbox or numeric up down

control might appear. Optional attributes like min, max and step could be used as well.

<input type=" number" min="3" max="12" step="2" />

Time and Again

Version 5 of HTML finally defines some kind of date and/or time picker in its standards. This

could mean no more custom JavaScript or AJAX implementation to show the user a calendar or

time selector. Full date and time display, including a time zone, could be marked up as follows:

<input type=" datetime " />

Other possible date and/or time related type options are listed in this table:

Input Type Description

datetime-local Date and time display, with no setting or indication for time zones.

time Time indicator and selector, with no time zone information.

date Selector for calendar date.

week Selector for a week within a given year.

month Selector for a month within a given year.

Slider

If a number needs to be entered without typing the actual figure, setting the type to range could

result in a slider of some form. Again the attributes min, max and step could be of use here.

<input type=" range " min=" 5" max="1 5" step=" 3" />

Other Types

The HTML5 specification defines some other types. They are listed here

Input Type Description

tel Phone number box. Numeric keypads of mobile devices may adapt to it.

search Meant for search terms. Browsers may show rounded input box corners.

color Shows some kind of color picker.

2-8 Introduction to HTML5

Fancy Elements

Key Points

Next to the attributes and input types discussed before, there are also some brand new elements

documented by HTML5. We will look at them here.

Check it Out

The following example checks to see whether the progress element is supported by the current

user agent:

var bProgress = (document.createElement(" progress ").value != undefined);

Progress Bar

The progress element could be used in conjunction with JavaScript to display the progress of a

task or process as it is underway. The max and value attributes can be used to manage its

progress.

<progress max="100" value="35"></progress>

Gauge

The meter tag is used for indicating a scalar measurement within a known range or a fractional

value. Also called a gauge, usage could include displaying disk usage, a fraction of a voting

population to have selected a certain product or political party or the relevance of a search query

result.

<meter max="20" value="17"></meter>

Show some Results

For showing results coming from a piece of JavaScript like a calculation, the output element

could be used. The value attribute is used to set the desired result from script.

<output>some result</output>

Asymmetric Key Generator

Module 2: Integrated HTML5 APIs 2-9

In case a pair of public/private cryptographic keys need to be generated, the keygen element can

be used. When the form the control is part of is submitted, the private key is stored in the local

keystore, and the public key is packaged and sent to the server.

<keygen name=" secretKey " />

Additional attributes are listed in the following table:

Atrribute Description

challenge Enables a string value to be packaged with the submitted public key.

keytype Specifies the security algorithm of key generated. Defaults to ñrsaò.

2-10 Introduction to HTML5

Trendy Script Additions

Key Points

Besides all the new attributes, input types and elements, HTML5 also adds several JavaScript

artifacts to the user agents. We will review some of them here.

Validity State Object

The ValidityState object is the type returned when getting the validity property of an element.

This can be done as shown here:

var txt = document.getElementById("someInputBox");

var objV alidityState = txt. validity ;

The ValidityState object contains the following properties:

Property Description

stepMismatch True when its value does not fit the rules given by the step attribute.

rangeOverflow True when its value that is too high for the max attribute.

rangeUnderflow True when its value is too low for the min attribute

tooLong True when its value is too long for its maxlength attribute.

patternMismatch True when its value does not satisfy the pattern attribute.

typeMismatch True when its value is not in the correct syntax (like email or url).

valueMissing True when it has no value but has a required attribute.

customError True when its custom validity error message (set by the setCustomValidity

method) is not an empty string.

valid True when all the constraints mentioned above have passed.

After referencing the ValidityState object, it will always show up-to-date information about the

element concerned. That is because the validity checks it returns are updated automatically

depending on any changes that may occur on the element at hand.

Other Validation Members

Module 2: Integrated HTML5 APIs 2-11

Before validating an element, its willValidate property could be used to check whether any

validation rules have been defined for that element. The method checkValidity can be used per

element and on the whole form to force all validation rules to fire and to return the outcome, as if

the form was submitted normally.

Custom Validation

If it appears necessary to create your own validation functionality and show a different message

to go with it, the setCustomValidity method could be used. The setCustomValidity method sets

the read-only DOM attribute validationMessage of the element concerned and sets the

customError property of the ValidityState object to false.

function vali dateForm()

{

 var txt = document.getElementById("txtRequired");

 if (txt.value == "")

 {

 txt.setCustomValidity("I'm sorry, Dave. I'm afraid I can't do that.");

 }

 else

 {

 txt.setCustomValidity("");

 }

}

Property valueAsNumber

Instead of the value property of an input type that always returns a string, the valueAsNumber

property could be used if a numeric value is expected. It returns the value as a floating-point

number or NaN if no number is present (or in case there is no value at all).

2-12 Introduction to HTML5

Lesson 2

Playing Audio and Video

The HTML5 specification contains elements that enable browsers to playback sounds and

movies without an additional plugin. Media containers and codecs will be discussed before

introducing the media elements and their most important attrubutes. Scripting these elements

will be demonstrated last.

Module 2: Integrated HTML5 APIs 2-13

Containers and Codecs

Key Points

Before the new HTML5 media elements are presented it is important to discuss some important

characteristics of media containers and codecs.

Containers

Known video and audio files like AVI files or MP4 files are container files. They can been seen

as a kind of ZIP or RAR file that contains a number of files. A Video file contains one or more

video tracks and audio tracks. An audio track contains markers to synchronize the sounds with

the video. At runtime the audio and video tracks are combined to play the movie. Containers can

also have metadata, like the title of the video itself, cover art and sometimes episode numbers.

Examples of other video containers are Flash Video (.flv), Matroska (.mkv), Ogg and WebM.

Some known audio containers are WAV and AIFF.

Codecs

A Video or audio coder and decoder (codec) is an algorithm (software program) by which a

media stream is encoded into a certain format. A media player decodes the stream again to be

able to play it back. Codecs make use of compression techniques, which is necessary because

raw media files would be too large to transmit and handle within an acceptable amount of time.

Examples of audio codecs are MPEG-1 Audio Layer 3 (MP3), Advanced Audio Coding (AAC)

and Ogg Vorbis. The most relevant codecs for video are H.264, VP8 and Ogg Theora. It is

important to know that the HTML5 specification makes no recommendation about codecs at all.

For an overview of which media containers supports which media encoding format, see the

following web page: http://en.wikipedia.org/wiki/Comparison_of_container_formats.

http://en.wikipedia.org/wiki/Comparison_of_container_formats

2-14 Introduction to HTML5

HTML5 Media Elements

Key Points

HTML5 provides two important media elements, the audio and video tag. Both the video and

audio API derive from the same media API, so the events and members are very much alike.

Both media tags will be discussed along with their most important attributes.

Check it Out

Using Modernizr, the video and audio properties can be checked to determine user agent support,

like so:

var b CanPlayVideo = Modernizr. video ;

var b CanPlayAudio = Modernizr. audio ;

Another technique is to create an audio or video element in memory and check its canPlayType

property, as follows:

var bCanPlayVideo = !!document.createElement(" video ").canPlayType;

var b CanPlayAudio = !!document.createElem ent(" audio ").canPlayType;

To see whether a certain media container is supported, Modernizr can be used as follows:

var strWebMSupp = Modernizr.video.webm;

var strOggSupp = Modernizr.video.ogg;

The following code could be used as well:

var video = docu ment.createElement("video");

var strWebMSupp = video.canPlayType('video/webm; codecs="vp8, vorbis"')

var strOggSupp = video.canPlayType('video/ogg; codecs="theora, vorbis"')

The value returned is either an empty string for no support, ñmaybeò if the only the container is

asked for and supported and ñprobablyò if both the container and the desired codec(s) are asked

for and supported. No true is ever returned, because the user may have, for example, changed

certain (mobile) device settings to disable (downloading and) playing a certain size of media

files alltogether, without the browser being aware of it. Furthermore, even when providing both

Module 2: Integrated HTML5 APIs 2-15

the container and the codecs, it still does not include information like the actual bitrate but only

the maximum bitrate. An overview of video type parameters and their possible return values is

found here: http://wiki.whatwg.org/wiki/Video_type_parameters.

Saturday Night at the Movies

The video tag has a src attribute of its own, but it is better to create more child elements of type

source, containing different video files and optionally their Multipurpose Internet Mail

Extensions (MIME) type and the video and audio codecs to be used. The user agent will start

with the first source element, working its way down until a supported media file is found.

<video width="400" controls="controls">

 <source src="vid.webm" type='video/webm; codecs="vp8, vorbis"' />

 <source src="vid.mp4" type='video/mp4; codecs= "avc1.42E01E, mp4a.40.2"'/>

 <source src="vid.ogv" type='video/ogg; codecs="theora, vorbis"' />

 Sorry, your browser does not support the video element.

</video>

It is recommended to specify as much (correct and verified) detail as possible for the type

attribute. The browser will check this attribute first and if it exists, it is used to determine

whether to download that particular file. Not specifying the type attribute will result in the

browser downloading (part of the) file before concluding whether or not it is supported, wasting

bandwidth, memory, processor time and user patience.

Play it Again, Sam

As said, the audio element is based on the same media API as the video tag. So to play some

sound or music from inside an HTML5 compatible browser, the following syntax could be used:

<audio controls="controls" >

 <source src="mus.ogg" type='audio/ogg; codecs="vorbis"' />

 <source src="mus.mp3" type='audio/mpeg; codecs="mp3"' />

 ˱ÓÏÕÒÃÅ ÓÒÃˮʏÍÕÓƚÁÁÃʏ ÔÙÐÅˮƦÁÕÄÉÏƳÍÐʩƘ ÃÏÄÅÃÓˮʏÍÐʩÁƚʩʣƚʪʏƦ˲

 Sorry, your browser does not support the audio element.

</audio>

Common Attributes

The next table lists some of the attributes that can be used on both media elements, with the

exception of the poster and height and width attributes, which only work for the video element.

Attribute Description

controls Shows controls like play, volume and media progress.

autoplay Starts the media concerned automatically.

loop Starts the desired media from the beginning after it finishes.

src Points to the media file that is to be played.

poster Indicates the image to be shown while the video is being downloaded or

until the video is started (video element only).

height, width Size of the video in pixels (video element only).

Visit http://www.quackit.com/html_5/tags/html_video_tag.cfm for more attributes and other

information on the video element (a link to the audio element is present on that page as well).

Web Server MIME Types

If a media file will not play in the browser, make sure the web server does not block the MIME

type concerned. Ways for setting MIME types differ for every web server brand. When using

Microsoft ASP.NET, MIME types can be set by declaring the following elements in the so-called

web.config file.

http://wiki.whatwg.org/wiki/Video_type_parameters
http://www.quackit.com/html_5/tags/html_video_tag.cfm

2-16 Introduction to HTML5

<configuration>

 <system.webServer>

 <staticContent>

 <mimeMap fileExtension=".mp4" mimeType="video/mp4" />

 <mimeMap fileExtension=".m 4v" mimeType="video/m4v" />

 </staticContent>

 </system.webServer>

</configuration>

Module 2: Integrated HTML5 APIs 2-17

Media Scripting

Key Points

The media elements can be controlled by JavaScript as well. Creating custom playback control

possibilities, responding to events or setting properties at runtime, it is all possible. We will

discuss and show some possibilities here.

Properties

The next table shows some media properties and their purpose.

Property Description

currentTime The current playback time in seconds. Setting this attribute moves the

playback position to the specified time index.

duration Amount of seconds that the full media clip. If unknown, NaN is returned.

paused Boolean indicating whether the media clip is being paused (read-only). If

the clip is not started yet, its value is true.

volume Gets or sets the volume of the playing media clip, taking a float value

ranging from 0.0 (silent) to 1.0 (loudest).

playbackRate The current playback speed, for example 1.0 is normal, 2.0 is two times

faster forward, 0.5 is half speed.

The following code example shows how to use the value of an input type range to set the volume

of the media element.

var videoElm = document.getElementById("videoElement");

var volRange = document.getElementById("volumeRange");

videoElm. volume = volRange.value;

For more information on these and other properties of media elements, see the following web

page: http://www.chipwreck.de/blog/2010/03/01/html-5-video-dom-attributes-and-events/.

Methods

The following table shows some media methods and their purpose.

http://www.chipwreck.de/blog/2010/03/01/html-5-video-dom-attributes-and-events/

2-18 Introduction to HTML5

Method Description

play Will always start the media clip from the current playback position. When

a clip is first loaded, this will be the beginning of the clip.

pause Pauses the media clip playback when currently playing.

Here is an example of how to start playing a video only when the element is in pause mode.

if (videoElm.paused)

{

 videoElm.play();

}

More methods are found here: http://www.kaizou.org/2009/04/html-5-audio-video-elements/.

Events

The media elements also publish events that client-side scripts can subscribe and respond to.

Some examples are listed in the next table.

Event Description

onplay Happens when playback has begun. Fired after the play() method has

returned, or when the autoplay attribute has caused playback to begin.

onpause Occurs when playback has been paused. Fired after the pause() method

has returned.

onratechange Fires if either the defaultPlaybackRate or the playbackRate attribute has

just been changed.

In the media element, the desired event can be coupled declaratively to an event handler method:

<video onplay ="togglePlayPauseButtonCaption('Pause');" ... >

The addEventListener method of the element concerned can also be used to programmatically

hook up the method concerned, as follows:

videoElm.addEventListener(

 " pause",

 function ()

 {

 togglePlayPauseButtonCaption('Play');

 },

 false // The event handler is to be executed in the bubbling phase ,

); // instead of the capturing phase

Note When using the addEventListener method, the first argument (EventType) needs to be

written without the ñonò prefix.

The belonging method could look like this:

function togglePlayPauseBu ttonCaption(desiredCaption)

{

 document.getElementById("playOrPauseButton").value = desiredCaption;

}

For information on media events, see: http://www.w3.org/TR/html5/video.html#mediaevents.

http://www.kaizou.org/2009/04/html-5-audio-video-elements/
http://www.w3.org/TR/html5/video.html#mediaevents

Module 2: Integrated HTML5 APIs 2-19

Lesson 3

The Canvas Element

Canvas is the element in HTML5 that enables web developers to create a drawing environment

within the browser. JavaScript code is able to access the canvas element through a full set of

drawing functions similar to other common graphics APIs. Examples of canvas usage include

building graphs, animations, games, and image composition.

The Canvas 2D API is a low level, procedural model that updates a resolution-dependent

bitmap. Therefore it is not a vector-based environment like Scalable Vector Graphics (SVG),

which the HTML5 specification allows to be embedded directly in web pages as well.

The specifications warn web authors not to use the canvas element in a document when a more

suitable element is available. It is said, for example, not to be appropriate to use a canvas

element to render a page heading. If the presentation of the heading is graphically intense, it

should be authored using the appropriate element (like h1) and then styled using a Cascading

Style Sheet (CSS).

2-20 Introduction to HTML5

Basic Doodling

Key Points

The HTML5 canvas element is meant to draw graphics on a web page using JavaScript. It is a

rectangular area of which every pixel can be controlled. The canvas element has several methods

for drawing paths, boxes, circles, characters and adding images. This topic will discuss this

element and some of the key features of the belonging Canvas 2D API.

Check it Out

To make sure the user agent at hand supports canvas, use the following Modernizr property:

var bCanvasSupport = Modernizr.canvas;

Checking for canvas browser support without an external tool is done as follows:

var bCanvasSupport = !!document.createElement('canvas').getContext;

Stretching the Canvas

A web page may contain one or more canvas elements. They can be styled like any other

element using Cascading Style Sheets (CSS). The next example shows an inline style to create a

border around the canvas. If width and height are not present, the canvas measures will default to

300 pixels wide by 150 pixels high.

<canvas id="myCanvas" width="800" height="500" style="border:1px solid;">

 We are sorry to inform you that this browser does NOT support canvas.

</canvas>

Stick to the Context

To be able to control the canvas element just marked up, a reference to its 2D context needs to be

created (which is the only context type available at this time). This could be done using a

function in JavaScript, as shown here:

function get2dContext()

{

 var myCanvas = document.g etElementById("myCanvas");

 var myContext = myCanvas.getContext("2d");

Module 2: Integrated HTML5 APIs 2-21

 return myContext;

}

Rectangles and Circles

After getting a reference to the 2D context of the canvas concerned, several basic drawing

figures can be created. For example, a solid green rectangle could be made like this:

// Getting hold of the context first.

var ctx = get2dContext();

ctx.fillStyle = "#00FF00";

ctx.fillRect(20, 30, 200, 150);

A solid blue colored open rectangle, having a line thickness of 28 canvas coordinate space units

and rounded corners is created as follows:

ctx.lineWidth = 28;

ctx.lineJoin = "round";

ctx.strokeStyle = "#0000FF";

ctx.strokeRect(260, 35, 135, 210);

Circles can be drawn using the arc method of the context. The next code draws an open circle.

var endAngle = Math.PI * 2; // 360 degrees

ctx.beginPath();

ctx.arc(500, // x

 80, // y

 40, // radius

 0, // start angle

 endAngle, // end angle

 true // clockwise (false = counter - clockwise)

);

ctx.closePat h();

ctx.stroke(); // use ctx.fill() to draw a solid circle

For information on how to create an oval shape, see the following page on the HTML5 Canvas

Tutorials site via http://www.html5canvastutorials.com/tutorials/html5-canvas-ovals.

Stay on the Path

The Path object enables the drawing of custom shapes. Using paths, all kinds of complicated

shapes can be created, with multiple line and curve segments and even subpaths.

First the outline of the figure can be drawn. This can be seen as drafting with a pencil. Then the

shape can be drawn using a stroke or solidly filled. This can be seen as the inking part, after

which the path becomes visible.

The following piece of source code draws a triangle using the path object. Using the ctx.fill()

method instead of ctx.stoke() on the last line would draw a solid triagle in this case.

// First "pencil" the desired outline.

ctx.beginPath();

ctx.moveTo(650, 250);

http://www.html5canvastutorials.com/tutorials/html5-canvas-ovals

2-22 Introduction to HTML5

ctx.lineT o(710, 350);

ctx.lineTo(580, 380);

// Close the Path to its start point.

ctx.closePath();

ctx.strokeStyle = "#FF0000";

ctx.lineWidth = 5;

// Now draw the line for real using "ink".

ctx.stroke();

For more information on paths, see http://diveintohtml5.org/canvas.html#paths.

Signing a Painting

The 2D Canvas API makes it possible to draw both solid and outlined characters. An example of

how to do this, is shown here:

ctx.font = "bold 48px Comic Sa ns MS";

ctx.fillText("Hello HTML5 Canvas", 30, 40); // use ctx.strokeText() for

 // outlined characters

See https://developer.mozilla.org/en/drawing_text_using_a_canvas for more information.

Starting with a Clean Slate

The trick used to erase the drawing context of the canvas is setting its width or height property to

another value. The following method shows an example of how this could be done.

function resetCanvas()

{

 var myCanvas = document.getElementById("myCanvas");

 myCanvas.height = myCanvas.height++;

 myCanvas.height = myCanvas.height -- ;

}

http://diveintohtml5.org/canvas.html#paths
https://developer.mozilla.org/en/drawing_text_using_a_canvas

Module 2: Integrated HTML5 APIs 2-23

More Canvas Art

Key Points

In this topic some less basic Canvas 2D API functionality will be discussed.

Color Gradient

When working with the canvas element, it is also possible to work with both linear and radial

color gradients. The createLinearGradient() method shown below takes four arguments. The

first two define the x and y coordinates of the starting point of the gradient, the last two represent

the gradientôs ending point.

In the code example the gradient is positioned vertically (from top to bottom), because both x

coordinates are equal and only the y coordinates differ. Using two or more color stops (using a

floating point value between 0.0 and 1.0 representing the position between the start and end

points), the gradient can be completed. The gradient object is then set as the fillStyle of the

rectangle to be drawn.

// Paints along a line from (x0, y0) to (x1, y1)

var myGradient = ctx.createLinearGradient(

 580, // x0

 60, // y0

 580, // x1

 150 + 60 // y1

);

myGradient.addColorStop(0.0, "Red");

myGradient.addColorStop(0 .5, "White");

myGradient.addColorStop(1.0, "Blue");

ctx.fillStyle = myGradient;

ctx.fillRect(580, 60, 200, 150);

2-24 Introduction to HTML5

For another example of linear gradients and how to create a radial gradient, see the following

page: http://www.tutorialspoint.com/html5/canvas_create_gradients.htm.

Paint me a Picture

It is also possible to load an image and place in anywhere inside the canvas using the method

drawImage(). The first two parameters of this method are the coordinates of the spot the picture

should be drawn. The optional third and fourth parameter are used to scale the image.

If an image is attempted to be drawn onto the canvas before it has been loaded completely, the

image will not be rendered at all. That is the reason for the callback method to be executed after

the image finished loading. The callback method can then safely call the drawImage() method.

function loadImage()

{

 imgClock = new Image();

 imgClock.sr c = "image/clock.jpg";

 // Call the addImage() method as soon as the image is loaded.

 imgClock.onload = addImage;

}

function addImage()

{

 var ctx = get2dContext();

 ctx.drawImage(imgClock, 0, 185, 500, 315);

}

Transformation

Using the Canvas 2D API performing transformations like scaling, translating and rotating on

the canvas are made possible. It is adviced to save the state of the context just before any

transformation is performed. Then the desired transformations are to be performed at the origin

of the canvas (coordinate 0,0). Right after that, the saved context state should be restored again.

This is necessary because (unless you manually reset all transformation settings) all

transformation (and other context) settings will remain active on future shapes, as well.

So by calling the save() method on the context, its state is stored on a stack. When calling

restore(), the last saved state is retrieved from that stack and all context settings are restored.

The following example first sets the rotation of the canvas to 30 degrees and the translation to

100, 100. Then a text is put on it. The canvas is rotated back 50 degrees and a rectangle is drawn.

var ctx = document.getElementById("myCanvas").getContext("2d");

ctx.save();

ctx.rotate(0. 30);

ctx.translate(100, 100);

ctx.font = "bold 48px Courier New";

ctx.textBaseline = "top";

ctx.fillText("Hello HTML5", 0, 0);

ctx.rotate(- 0.50);

http://www.tutorialspoint.com/html5/canvas_create_gradients.htm

Module 2: Integrated HTML5 APIs 2-25

ctx.fillRect(400, 80, 200, 150);

ctx.restore();

More information and working examples about several transformation methods can be found at

the following page: https://developer.mozilla.org/en/Canvas_tutorial/Transformations.

https://developer.mozilla.org/en/Canvas_tutorial/Transformations

Module 3: HTML5 Associated APIs 3-1

Module 3

HTML5 Associated APIs

Contents:

Lesson 1: Geolocation API 3-3

Lesson 2: Web Storage API 3-9

Lesson 3: Web Sockets and Web Workers 3-14

3-2 Introduction to HTML5

Module Overview

A lot of segments of the HTML5 initiative were originally part of the HTML5 specification and

were moved to separate standards documents later on, in order to keep the specification focused.

It was considered smart to discuss and edit some of these features on a separate track before

making them into official specifications. Some small markup issue would not hold up the

process of the entire specification in this way.

This module discusses some of these Application Programming Interfaces (APIs) that are not

part of the official HTML5 specifications, but have their own Web Hypertext Application

Technology Working Group (WHATWG) and/or World Wide Web Consortium (W3C)

specifications.

Module 3: HTML5 Associated APIs 3-3

Lesson 1

Geolocation API

The Geolocation API allows web developers to build applications that can determine where the

user is and then share or act on that information. The method of position discovery is left up to

the user agent. This API gives developers a set of objects and methods to handle and process

location data.

3-4 Introduction to HTML5

What is the Geolocation API

Key Points

The Geolocation API is an effort by the World Wide Web Consortium (W3C) to standardize an

interface to retrieve the geographical location information for a client-side device. It defines a set

of ECMAScript standard compliant objects that executes in the client application. It tries to

locate the client device by using location information servers, which are transparent for the API.

Examples of methods that are used for position determination are IP address, Wi-Fi and

Bluetooth MAC address, RFID, Wi-Fi connection location, or device GPS and GSM/CDMA cell

IDs. The location is returned with a given accuracy depending on the best location information

source available. No guarantee is given that the API returns the device's actual location.

An opt-in Service

Geolocation support is opt-in, meaning the browser will never force the user to reveal its current

physical location to a remote server. The user has to give permission to the application in order

for the location data to be received. This addresses privacy concerns and needs to be accounted

for in the planning and design of any location-aware application. The user experience differs

from browser to browser.

Module 3: HTML5 Associated APIs 3-5

API Objects and Members

Key Points

The geolocation API can be reached through the global navigator object via a property called

geolocation and has the following methods:

¶ getCurrentPosition

¶ watchPosition

¶ clearWatch

All these methods will be discussed next, together with error handing techniques.

Getting the Position Once

The method getCurrentPosition makes a so-called one-shot position request, taking two callback

functions as arguments, the first one to be called for a successful find, the other (which is

optional) in case of any error. The next JavaScript code example illustrates this.

if (navigator.geolocation) // or use if (Modernizr.geolocation)

{

 navigator.geolocation.getCurrentPosition(successCallback, errorCallback);

}

else

{

 alert("Geolocation API not available");

}

Location was Found

The callback function that is called in case of success, takes a position object as parameter. The

possible properties of this position object are listed here.

3-6 Introduction to HTML5

 Property Data Type Remark

H
a
s
 a

 v
a
lu

e coords.latitude double Decimal degrees

coords.longitude double Decimal degrees

coords.accuracy double Meters

timestamp DOMTimeStamp Like a Date() object

C
a
n

 b
e
 n

u
ll coords.altitude double or null Meters above the reference ellipsoid

coords.altitudeAccuracy double or null Meters

coords.heading double or null Degrees clockwise from true north

coords.speed double or null Meters per second (m/s)

The method called when a position was found, could look as follows:

function successCallback(position)

{

 var latitude = position.coords.latitude;

 var longitude = position.coords.longitude;

 var datetime = new Date(position.timestamp);

 var accuracy = position.coords.accuracy;

 alert("On " + datetime.toLocaleString() + ", you could be here: "

 + latitude + ", " + longitude

 + " \ n(give or ta ke " + accuracy + " meters).");

}

Something is Wrong

If something is not working out, for example the user does not give permission to share his or

her position, the errorCallback method is called. This method takes an error object parameter

containing the error code and sometimes the message property is filled as well. The following

table lists the possible error codes and their meaning.

Constant Value Description

PERMISSION_DENIED 1 User selects ñDonôt Shareò button or otherwise denies

access to his location.

POSITION_UNAVAILABLE 2 The network is down or the positioning satellites

cannot be contacted.

TIMEOUT 3 The Network is up but it takes too long to calculate

the userôs position.

Here is an example of an error handling method:

function errorCall back(err)

{

 switch (err.code)

 {

 case err.PERMISSION_DENIED:

 //

 break;

 case err.POSITION_UNAVAILABLE:

 //

 break;

 case err.TIMEOUT:

 //

 break;

 default: // UNKNOWN_ERROR

 //

 break;

Module 3: HTML5 Associated APIs 3-7

 }

}

Follow Me Please

The watchPosition() method has the same signature as the getCurrentPosition() method shown

before. The main difference is that the callback function will be called every time the location of

the device changes. Actively polling the current position is therefore not necessary. The device

determines the optimal polling interval, and will call the desired method when a change in the

userôs position is determined.

The return value of the watchPosition() method is a unique watch indentifier. In order to stop the

watching mechanism, this identifier should be passed to the clearWatch() method. The

JavaScript methods setInterval() and clearInterval() work the same way.

The following code snippets show how to use both methods including the use of the unique

watch indentifier.

var numWatchID;

numWatchID = navigator.geolocation. watchPosition (

 successRepeatingCallback, errorCallback, { enableHighAccuracy: true });

// ...

function stopFollowingMe()

{

 navigator.geolocation. clearWatch (numWatchID);

}

Final Options

There is a third argument that can be passed to both the getCurrentPosition() and watchPosition()

methods, an object of type PositionOptions. This object has the following properties:

Property Data Type Default Remark

enableHighAccuracy boolean false true is usually slower

maximumAge long 0 milliseconds (ms)

timeout long 0 milliseconds (ms)

Each of these properties will be explained in short.

¶ enableHighAccuracy makes sure that the device tries to get a more detailed reading of the

current position. If the phone includes a Global Positioning System (GPS) receiver, that

service will be used to get a more detailed latitude and longitude. Unfortunately this will

demand more power from the battery.

¶ maximumAge can be set to allow the device to answer more quickly to a position request

by using cached location data. It can be set to Infinity to always use data from cache

memory. A default value of 0 (zero) makes sure the browser will look up a new position on

each request.

¶ timeout specifies the time to wait for a position, before the error callback is called with the

TIMEOUT code. If not set, no time limit is applied.

The next code example shows how to set the properties on the PositionOptons object argument

using the JSON notation.

3-8 Introduction to HTML5

navigator.geolo cation.getCurrentPosition(successCallback, errorCallback,

 {

 enableHighAccuracy: true,

 maximumAge: 60000,

 timeout: 10000

 }

);

Module 3: HTML5 Associated APIs 3-9

Lesson 2

Web Storage API

Web Storage is a separate HTML5 specification and is sometimes refered to as Local Storage,

DOM Storage, HTML5 Storage or Offline Storage. It is an Application Programming Interface

(API) that makes persisting data in the client browser possible and available for repeated access

across requests. It is also possible to store data beyond the lifetime of the user agent.

3-10 Introduction to HTML5

Storage Overview

Key Points

Until now the only way to store some data on the client machine was by using cookies. Their

size is limited to 4 kilobytes and they are being transported to and from the web server on every

request. Two kinds of cookies exist. Session or temporary cookies are available during the

browser session and are stored in browser memory. Persistent or permanent cookies are stored in

small text files on the hard drive of the client computer and are available depending on their

expiration date.

Session and Local Storage

The Web Storage API gives the possibility to store data in the form of name/value pairs within

the client browser. The amount of storage space is about 5 MB (depending on the user agent).

This data is never transmitted to or from the web server. Two ways of local storage are present:

Session Storage and Local Storage. Both implement the same Web Storage interface.

Using Session Storage, values persist as long as the browser (tab) window exists and are only

visible from the browser (tab) windows in which they were created. This prevents ñleakingò

from one (tab) window to another, something that can happen when using cookies.

Local Storage values persist beyond (tab) window and even user agent lifetimes and are shared

across every browser (tab) at the same origin. Local Storage data will remain available until

explicitly removed by client side code or the user.

Another Local Storage Option

Besides Web Storage there is also the Web SQL Database API, another separate part of the

HTML5 specification. This API can be used for storing data in databases that can be queried

using a variant of SQL. For more information on these specifications and the uncertain future of

it, see http://html5doctor.com/introducing-web-sql-databases.

http://html5doctor.com/introducing-web-sql-databases

Module 3: HTML5 Associated APIs 3-11

Scripting the Storage

Key Points

This topic will discuss and show how to use the members of the Storage interface, implemented

by both the sessionStorage and localStorage objects.

Check it Out

When using Modernizr, support for both local and session storage can be checked like so:

var bLocalStorage = Modernizr.localstorage;

var bSessionStorage = Modernizr.sessionstorage;

Another way to determine whether storage is supported by the current browser is as follows:

var bLocalStorage = ("localStorage" in window)

 && window["localStorage"] !== null;

var bSessionStorage = ("sessionStorage" in window)

 && window["sessionStorage"] !== null;

Put it Away

To store a name/value pair in either the localStorage or the sessionStorage is shown here:

localStorage.setItem("myLocalDataKey", " some local data value ");

Another syntax is possible as well by using a so-called expando property:

localStorage.myLocalDataKey = " some local data value ";

Where it says localStorage, sessionStorage can be used. This goes for all code examples.

Get it Back

Retrieving data works as follows. Expando property syntax can be used here as well.

var someResult = sessionStorage.getItem("mySessionDataKey");

var sameResult = session Storage.my Session DataKey;

3-12 Introduction to HTML5

Other properties and methods of the localStorage and sessionStorage objects are listed here.

Property or Method Description

removeItem(key) This method removes the item from the list.

length Property to get the length of the storage object array.

key(n) Method used to return the name of the n-th object in the array.

clear() Calling this method empties all key/value pairs from the array.

Catch the Storage Event

An event is fired when any change is made to the data. An event listener can be registered to the

window object, which allows tracking of the Storage object concerned, the key name, the old

and new value and the url of the web page from which the event fired.

Registering an event handler for the storage event looks as follows:

window.addEventListener("storage", showMeTheEventValues, false);

Note The last boolean argument of the addEventListener method indicates whether the event

handler is to be executed in the capturing phase (true) or in the bubbling phase (false).

The belonging method is shown here.

function showMeTheEventValues(e)

{

 var out = "key: " + e.key

 + ", new Value: " + e.newValue

 + ", oldValue: " + e.oldValue

 + ", url: " + e.url

 + ", storageArea: " + e.storageArea;

 alert(out);

}

The event argument of the Storage Event has the following properties:

Property Meaning

key The key value that was removed or updated.

newValue Contains the value after the change.

oldValue Contains the previous value before it was updated.

url Page of origin where the event occurred.

storageArea Provides a reference to the sessionStorage or localStorage concerned.

Exploring Web Storage

In some browsers the values stored in local and session storage can be browsed, edited and

deleted. Here are some browsers and the steps to take to view these storage panels.

Browser Steps

Opera Press [Menu] in upper left corner, then select Show Menu Bar. In the now

appearing menu, select Tools > Advanced > Opera Dragon Fly. In the appearing

Dragon Fly pane, select the Storage tab above and then the Local Storage and

Session Storage tabs at the bottom.

Chrome Click the Wrench menu button (top right) and select Tools > Developer Tools. In

the appearing pane select the Storage tab. Different storage options can found on

the left.

Module 3: HTML5 Associated APIs 3-13

Safari Press [ALT] to show the menu. Select menu Edit > Preferences. Click the

Advanced button. Check the ñShow Develop menu in menu barò checkbox.

Now press [ALT] again. Select menu Develop > Show Web Inspector. In the

appearing pane, select the Storage tab above. Different storage options can

found on the left.

Firefox Using the Firebug panel, select the Console tab. In the bottom left corner, after

the >>> characters either type sessionStorage or localStorage followed by

[ENTER]

Note All the latest browsers support native JSON encoding using the JSON.stringify() and

JSON.parse() methods. These methods could be used to store and retrieve (custom) objects as

strings in and out of Web Storage.

3-14 Introduction to HTML5

Lesson 3

Web Sockets and Web Workers

Although they are different Application Programming Interfaces (APIs), both Web Sockets and

Web Workers share the same communication API. That is why they are discussed together in this

lesson.

Web Sockets

Since the beginning of its existence, the web has been unidirectional. Web pages were only able

to send a request to a web server. The web server could never take the initiative to send a

message to the client.

A few tricks have been used to mimic the behavior of bi-directional communication. One of

them is called short polling, where the client makes a request every few seconds to check

whether server data has changed. So either new data or an empty message are returned, resulting

in a huge amount of server requests and high CPU usage due to constant data change tracking.

Another way to imitate some sort of two-way communication is known as long polling. In this

case the client makes a single request and the server keeps the connection open until the desired

data has changed, after which the server sends its response. This results in a overhead in CPU

usage as well because of constant data change tracking. Furthermore (several) thousands of open

connections must be handled by the web server simultaneously.

The HTML5 Web Sockets API defines a full-duplex communication technology that operates

over a single socket and is exposed via a JavaScript interface in user agents.

Web Workers

Heavy computing has historically been difficult to achieve using JavaScript on the browser. This

was due to the single threaded nature of the scripting language. The Web Workers specification

defines an API that allows developers to spawn background workers running JavaScript code in

parallel to their main page. This allows for thread-like operations with the passing of string

messages as coordination mechanism.

